x-uni.com
регистрация / вход
сейчас на линии 40 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 40 чел.
Высшая математика.

Ильин В.А., Куркина А.В.

Высшая математика.

Предисловие 3
Глава 1. Вещественные числа. Множества вещественных чисел 5
§ 1. Вещественные числа 5
1.1. Рациональные числа и их основные свойства (5). 1.2. Вещественные числа и правило их сравнения (7). 1.3. Множества вещественных чисел, ограниченные сверху или снизу (11). 1.4. Приближение вещественного числа рациональными числами (16). 1.5. Операции сложения и умножения и свойства вещественных чисел (17). 1.6. Некоторые часто используемые соотношения (23)
§ 2. Некоторые конкретные множества вещественных чисел 24
§ 3. Элементы комбинаторики. Формула бинома Ньютона 25
Глава 2. Системы координат и их простейшие применения 29
§ 1. Декартовы координаты на прямой 29
1.1. Направленные отрезки на оси (29). 1.2. Линейные операции над направленными отрезками (29). 1.3. Декартовы координаты на прямой (31)
§ 2. Декартовы прямоугольные координаты на плоскости и в пространстве 32
2.1. Декартовы прямоугольные координаты на плоскости (32). 2.2. Декартовы прямоугольные координаты в пространстве (33)
§3. Простейшие задачи аналитической геометрии., 34
3.1. Понятие направленного отрезка в пространстве и его проекции на ось (34).
3.2. Расстояние между двумя точками (35). 3.3. Деление отрезка в данном отношении (35)
§ 4. Полярные, цилиндрические и сферические координаты 37
4.1. Полярные координаты (37). 4.2. Цилиндрические координаты (38). 4.3. Сферические координаты (39)
§ 5. Краткие сведения о комплексных числах 40
Глава 3. Определители и системы линейных уравнений 47
§ 1. Определители второго и третьего порядков и их свойства 47
1.1. Понятие матрицы и определителя второго порядка (47). 1.2. Система двух линейных уравнений с двумя неизвестными (48). 1.3. Определители третьего порядка (50). 1.4. Свойства определителей (51). 1.5. Алгебраические дополнения и миноры (53)
§ 2. Системы линейных уравнений с тремя неизвестными 56
2.1. Системы трех линейных уравнений с тремя неизвестными с определителем, отличным от нуля (56). 2.2. Однородная система двух линейных уравнений с тремя неизвестными (59). 2.3. Однородная система трех линейных уравнений с тремя неизвестными (61). 2.4. Неоднородная система трех линейных уравнений с тремя неизвестными с определителем, равным нулю (62)
§ 3. Понятие об определителях любого порядка и о линейных системах с любым числом неизвестных 64
§ 4. Отыскание решения линейной системы методом Гаусса 66
Глава 4. Векторная алгебра 69
§ 1.' Понятие вектора и линейные операции над векторами 69
1.1. Понятие вектора (69). 1.2. Линейные операции над векторами (70). 1.3. Проекция вектора на ось и ее свойства (75). 1.4. Декартовы прямоугольные координаты вектора (77)
§ 2. Скалярное произведение двух векторов 79
2.1. Определение скалярного произведения (79). 2.2. Свойства скалярного произведения (80). 2.3. Выражение скалярного произведения в координатах (82)
§3. Векторное и смешанное произведения векторов 83
3.1. Правые и левые тройки векторов (83). 3.2. Определения и свойства векторного и смешанного произведений (85). 3.3. Выражение векторного и смешанного произведений в координатах (89). 3.4. Двойное векторное произведение трех ненулевых векторов (90)
Глава 5. Преобразование декартовых прямоугольных координат на плоскости и в пространстве 91
§1. Преобразование декартовых прямоугольных координат на плоскости 91
§ 2. Преобразование декартовых прямоугольных координат в пространстве 93
Глава 6. Основы аналитической геометрии 98
§ 1. Уравнение линии на плоскости 98
1.1. Понятие об уравнении линии (98). 1.2. Алгебраические линии на плоскости (100). 1.3. О пересечении двух линий (102)
§2. Уравнение поверхности и уравнения линии в пространстве 102
2.1. Понятие об уравнении поверхности (102). 2.2. Алгебраические поверхности в пространстве (104). 2.3. Уравнения линии в пространстве (105). 2.4. Параметрические уравнения линии и поверхности в пространстве (106)
§ 3. Прямая линия на плоскости 107
3.1. Общее уравнение прямой (107). 3.2. Неполные уравнения прямой. Уравнение прямой в отрезках (108). 3.3. Каноническое уравнение прямой и уравнение прямой, проходящей через две данные точки (ПО). 3.4. Параметрические уравнения прямой (ПО). 3.5. Уравнение прямой с угловым коэффициентом (111). 3.6. Условия пересечения, коллинеарности и ортогональности двух прямых. Угол между двумя пересекающимися прямыми (113). 3.7. Нормированное уравнение прямой: Расстояние от точки до прямой (117)
§4. Плоскость и прямая в пространстве 118
4.1. Общее уравнение плоскости (118). 4.2. Неполные уравнения плоскости. Уравнение плоскости в отрезках (120).. 4.3. Взаимное расположение двух плоскостей в пространстве (121). 4.4. Уравнение плоскости, проходящей через три различные точки, не лежащие на одной прямой (123). 4.5. Нормированное уравнение плоскости. Расстояние точки от плоскости (123). 4.6. Канонические уравнения прямой линии в пространстве (125). 4.7. Параметрические уравнения прямой в пространстве (126). 4.8. Взаимное расположение двух прямых линий в пространстве (126).' 4.9. Взаимное расположение прямой и плоскости в пространстве (128)
§ 5. Линии второго порядка на плоскости 129
5.1. Стандартное упрощение уравнения линии второго порядка на плоскости (129).
5.2. Центральные линии второго порядка (131). 5.3. Фокальные свойства эллипса и гиперболы (134). 5.4. Асимптоты гиперболы. Равнобочная гипербола как график обратной пропорциональности (135). 5.5. Нецентральные линии второго поряд¬ка (137). 5.6. График квадратного трехчлена (139)
§ 6. Поверхности второго порядка в пространстве 140
Глава 7. Предел последовательности 146
§ 1. Понятия последовательности и ее предела 146
1.1. Понятия последовательности и арифметических операций над последовательностями (146). 1.2. Ограниченные, неограниченные, бесконечно большие и бесконечно малые последовательности (147). 1.3. Основные свойства бесконечно малых последовательностей (151). 1.4. Сходящиеся последовательности и их свойства (154)
§ 2. Монотонные последовательности 159
2.1. Понятие монотонной последовательности (159). 2.2. Теорема о сходимости монотонной ограниченной последовательности (160). 2.3. Число е (161)
§3. Предельные точки последовательности и множества . . . 1бЗ
3.1. Предельные точки последовательности (163)1-3.2. Предельные точки множества (165)
§4. Верхний и нижний пределы последовательности 166
§ 5. Критерий Коши сходимости последовательности 169
Глава 8. Функция и ее предел ;| 172
§ 1. Понятия переменной величины и функции 172
§ 2. Предел функции по Гейне и по Коши 174
§3. Критерий Коши существования предела функции .181
§4. Арифметические операции над функциями, имеющими предел 183
§5. Бесконечно малые и бесконечно большие функции 185
Глава 9. Непрерывность функции 188
§ 1. Основные определения 188
§2. Локальные свойства непрерывных функций 190
§ 3. Прохождение функции, непрерывной на сегменте, через любое промежуточное значение 193
§ 4. Свойства монотонных функций 195
4.1. Понятия монотонной и строго монотонной функций (195). 4.2. Понятие обратной функции (196). 4.3. Условие существования обратной функции для строго монотонной функции (196). 4.4. Существование односторонних пределов у любой нестрого монотонной функции (197). 4.5. Необходимое и достаточное условие непрерывности на сегменте строго монотонной функции (198). 4.6. Условие существования для данной функции строго монотонной и непрерывной обратной функции (199)
§5. Сложная функция и ее непрерывность . . . 200
§ 6. Простейшие элементарные функции 201
6.1. Рациональные степени положительных вещественных чисел (201). 6.2. Показательная функция (203). 6.3. Логарифмическая функция (206). 6.4. Степенная функция с любым вещественным показателем (207).'6.5. Тригонометрические функ¬ции (208). 6.6. Обратные тригонометрические функции (213). 6.7. Гиперболические функции (214). 6.8. Класс элементарных функций (214)
§7. Первый и второй замечательные пределы 215
7.1. Функциональный аналог теоремы 9 из главы 7 (215). 7.2. Первый замечательный предел (215). 7.3. Второй замечательный предел (216)
§8. Классификация точек разрыва функции 219
§9. Три глобальных свойства непрерывных на сегменте функций 221
9.1. Первая теорема Вейерштрасса (221). 9.2. Вторая теорема Вейерштрасса (222). 9.3. Теорема Кантора о равномерной непрерывности (223)
Глава 10. Основы дифференциального исчисления 226
§1. Производная. Ее физическая и геометрическая интерпретации .226
1.1. Приращение аргумента и функций. Разностная форма условия непрерывности (226). 1.2. Определение производной (226). 1.3. Производная с физической и геометрической точек зрения (227); 1.4. Правая и левая производные (229)
§2. Понятие дифференцируемое™ функции 230
2.1. Определение дифференцируемое™ функции (230). 2.2. Связь между понятиями ; дифференцируемое™ и непрерывности функции (231). 2.3. Понятие дифференциала функции (231)
§ 3. Дифференцирование сложной функции и обратной функции 233
3.1. Дифференцирование сложной функции (233). 3.2. Дифференцирование обратной функции (234). 3.3. Инвариантность формы первого дифференциала (236)
§'4. Дифференцирование суммы, разности, произведения и частного функций . . . 237
§ 5. Производные простейших элементарных функций 240
5.1. Производные тригонометрических функций (240). 5.2. Производная логарифмической функции (242). 5.3. Производные показательной и обратных тригонометрических функций (243). 5.4. Производная степенной функции (245). 5.5. Таблица производных простейших элементарных функций (246). 5.6. Таблица дифференциалов простейших элементарных функций (247). 5.7. Использование дифференциала для установления приближенных формул (247). 5.8. Логарифмическая производная. Производная степенно-показательной функции (248)
§ 6. Производные и дифференциалы высших порядков 249
6.1. Понятие производной л-го порядка (249).

Скачать бесплатно на сайте yadi.sk
Скачать бесплатно на сайте yadi.sk

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!