x-uni.com
регистрация / вход
сейчас на линии 184 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 184 чел.
Дифференциальное и интегральное исчисление в примерах и задачах. (Функции одной переменной)

Марон И.А.

Дифференциальное и интегральное исчисление в примерах и задачах. (Функции одной переменной)

Предисловие 5
Глава I. Введение в математический анализ 7
§ 1.1. Действительные числа. Абсолютная величина действительного числа 7
§ 1.2. Понятие функции. Область определения 11
§ 1.3. Элементарное исследование функций 17
§ 1.4. Обратные функции 22
§ 1.5. Построение графиков функций 24
§ 1.6. Числовые последовательности. Предел последовательности 34
§ 1.7. Вычисление пределов последовательностей 40
§ 1.8. Признаки существования предела последовательности 42
§ 1.9. Предел функции 47
§ 1.10. Техника вычисления пределов 51
§ 1.11. Бесконечно малые и бесконечно большие функции. Сравнение их 58
§ 1.12. Эквивалентные бесконечно малые. Применением отысканию пределов 61
§ 1.13. Односторонние пределы 64
§ 1.14. Непрерывность функции. Точки разрыва и их классификация 66
§ 1.15. Арифметические действия над непрерывными функциями. Непрерывность сложной функции 72
§ 1.16. Свойства функции, непрерывной на отрезке. Непрерывность обратной функции 74
§ 1.17. Дополнительные задачи 78
Глава II. Дифференцирование функций 84
§ 2.1. Понятие производной 84
§ 2.2. Дифференцирование явно заданных функций 86
§ 2.3. Повторное дифференцирование явно заданных функций. Формула Лейбница 92
§ 2.4. Дифференцирование обратных функций и функций, заданных неявно или параметрически 96
§ 2.5. Приложения производной 100
§ 2.6. Дифференциал функции. Приложение к приближенным вычислениям 106
§ 2.7. Дополнительные задачи 110
Глава III. Применение дифференциального исчисления к исследованию функций ИЗ
§ 3.1. Основные теоремы о дифференцируемых функциях 113
§ 3.2. Раскрытие неопределенностей. Правило Лопиталя 119
§ 3.3. Формула Тейлора. Приложение к приближенным вычислениям . . 124
§ 3.4. Локальная формула Тейлора. Применение к вычислению пределов 128
§ 3.5. Признаки монотонности функции 129
§ 3.6. Максимумы и минимумы функции 132
§ 3.7. Отыскание наибольших и наименьших значений функции 138
§ 3.8. Решение задач геометрического и физического содержания 141
§ 3.9. Выпуклость и вогнутость кривых. Точки перегиба 145
§ 3.10. Асимптоты 148
§ 3.11. Общее исследование функции 152
§ 3.12. Приближенное решение алгебраических и трансцендентных уравнений 160
§ 3.13. Дополнительные задачи 167
Глава IV. Неопределенный интеграл. Основные методы интегрирования 171
§ 4.1. Непосредственное интегрирование и метод разложения 171
§ 4.2. Метод подстановки 175
§ 4.3. Интегрирование по частям 178
§ 4.4. Рекуррентные формулы 187
Глава V. Основные классы интегрируемых функций 190
§ 5.1. Интегрирование рациональных функций 190
§ 5.2. Интегрирование некоторых иррациональных выражений 195
§ 5.3. Подстановки Эйлера 198
§ 5.4. Другие методы интегрирования иррациональных выражений . . . 200
§ 5.5. Интегрирование биномиального дифференциала 203
§ 5.6. Интегрирование тригонометрических и гиперболических функций . 205
§ 5.7. Интегрирование некоторых иррациональных функций с помощью тригонометрических или гиперболических подстановок 212
§ 5.8. Интегрирование других трансцендентных функций 214
§ 5.9. Обзор методов интегрирования (основных видов интегралов) . . . 216
Глава VI. Определенный интеграл . 221
§ 6.1. Понятие определенного интеграла 221
§ 6.2. Вычисление определенных интегралов по формуле Ньютона— Лейбница 229
§ 6.3. Оценки интеграла. Определенный интеграл как функция своих пределов 233
§ 6.4. Замена переменной в определенном интеграле 246
§ 6.5. Упрощение интегралов, основанное на свойствах симметрии подынтегральных функций 257
§ 6.6. Интегрирование по частям. Вывод рекуррентных формул .... 262
§ 6.7. Приближенное вычисление определенных интегралов 269
§ 6.8. Дополнительные задачи 273
Глава VII. Приложения определенного интеграла 276
§ 7.1. Вычисление пределов сумм с помощью определенных интегралов 276
§ 7.2. Вычисление средних значений функции 278
§ 7.3. Вычисление площадей в декартовых координатах 282
§ 7.4. Вычисление площадей фигур при параметрическом задании границы (контура) 291
§ 7.5. Площадь в полярных координатах 294
§ 7.6. Вычисление объемов тел 298
§ 7.7. Вычисление длин дуг плоских кривых, заданных в декартовых координатах 306
§ 7.8. Вычисление длин дуг кривых, заданных параметрически 308
§ 7.9. Вычисление длин дуг кривых, заданных в полярных координатах 311
§ 7.10. Вычисление площади поверхности вращения 314
§ 7.11. Смешанные задачи на геометрические приложения определенного интеграла 319
§ 7.12. Вычисление давления, работы и других физических величин . . . 326
§ 7.13. Вычисление статических моментов и моментов инерции. Определение координат центра тяжести 330
§ 7.14. Дополнительные задачи 339
Глава VIII. Несобственные интегралы 343
§ 8.1. Несобственные интегралы с бесконечными пределами 343
§ 8.2. Несобственные интегралы от неограниченных функций 353
§ 8.3. Геометрические и физические приложения несобственных интегралов 364
§ 8.4. Дополнительные задачи 369
Ответы и указания 371

Скачать бесплатно на сайте dwl.alleng.ru

Предложения интернет-магазинов

Математика. 9 класс. "Неравенства". "Системы неравенств". Экспресс-репетитор для подготовки к ГИА

Автор(ы): Сычева Галина Владимировна, Гусева Наталья Борисовна, Гусев Владимир Алексеевич   Издательство: Астрель, 2013 г.  Серия: ГИА - экзамен в новой форме

Цена: 65 руб.   Купить

Пособие рассчитано на самостоятельную подготовку учащихся к ГИА. В него входят задания, включающие темы "Неравенства", "Системы неравенств с одной переменной. Совокупность неравенств с одной переменной". Каждый раздел предваряется кратким теоретическим материалом и содержит большое количество примеров решения задач. Количество заданий в теме варьируется в зависимости от ее сложности, а также количества заданий в 1 ИА, посвященных данной теме. Каждая тема включает в себя упражнения, которые позволяют учащимся самостоятельно повторить и закрепить изученное и успешно справиться с заданиями ГИА. Чтобы проверить, усвоен ли материал, в конце книги приведены ответы ко всем упражнениям.


Математика. Подготовка к ЕГЭ. Задание 17. Решение неравенств с одной переменной

Автор(ы): Прокофьев Александр Александрович, Корянов Анатолий Георгиевич   Издательство: Легион, 2014 г.  Серия: Готовимся к ЕГЭ

Цена: 135 руб.   Купить

Предлагаемое пособие посвящено выполнению задания СЗ на ЕГЭ по математике. Это задание повышенного уровня сложности, представляющее неравенство, которое содержит рациональные, иррациональные, показательные, логарифмические или модульные выражения, или систему неравенств. В пособии рассмотрены и прокомментированы все основные типы неравенств с одной переменной, соответствующие школьной программе по математике, представлен весь необходимый справочный материал и образцы заданий СЗ из экзаменационных работ ЕГЭ 2010-2013 гг. В книге изложены различные методы решения неравенств (алгебраические, функционально-графические, геометрические), дан большой набор упражнений для самостоятельного решения. Издание адресовано старшеклассникам, готовящимся к сдаче ЕГЭ, учителям и методистам. Книга входит в учебно-методический комплекс "Математика. Подготовка к ЕГЭ". 2-е издание, исправленное дополненное. Учебные пособия издательства "Легион" допущены к использованию в образовательном процессе приказом Минобрнауки России № 729.


Информатика в играх и задачах. 1 класс: методические рекомендации для учителя

Автор(ы): Горячев Александр Владимирович, Волкова Татьяна Олимповна, Горина Ксения Игоревна   Издательство: Баласс, 2012 г.  Серия: Образовательная система "Школа 2100"

Цена: 353 руб.   Купить

Пособие включает описание уроков по курсу "Информатика в играх и задачах" в 1-м классе. Для проведения занятий компьютеры не требуются. Учебник "Информатика в играх и задачах" соответствует Федеральному компоненту государственного стандарта общего образования, является составной частью комплекта учебников Образовательной системы "Школа 2100". Издание 3-е, исправленное.


Информатика в играх и задачах. 2 класс: Методические рекомендации для учителя

Автор(ы): Горячев Александр Владимирович, Волкова Татьяна Олимповна, Горина Ксения Игоревна   Издательство: Баласс, 2012 г.  Серия: Образовательная система "Школа 2100"

Цена: 353 руб.   Купить

Пособие включает описание уроков теоретической (математической) информатики по учебнику "Информатика в играх и задачах" для 2-го класса тех же авторов. Учебник "Информатика в играх и задачах" 1-4 кл. включает базовый комплект образования по информатике, обеспечивает выполнение государственных образовательных стандартов и является составной частью комплекта учебников Образовательной системы "Школа 2100". Издание 3-е исправленное

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!