x-uni.com
регистрация / вход
сейчас на линии 50 чел.
x-uni.com
x-uni.com
 
Математика
Биология
Литература
Русский язык
ВИДЕО
Физика
Химия
История
Английский
 
ВИДЕО
 
 
регистрация / вход
сейчас на линии 50 чел.
Основы математического анализа. Дифференциальное и интегральное исчисление функций одной вещественной переменной.

Хавин В.П.

Основы математического анализа. Дифференциальное и интегральное исчисление функций одной вещественной переменной.

Предисловие для студента 5
Предисловие для преподавателя 7
Введение 10
§ 1. Некоторые задачи математического анализа
§ 2. Множества 20
§ 3. Отображения 30
§ 4. Вещественные числа . 45
§ 5. Расширенная прямая R , пространство R* и комплексная плоскость С 79
§ 6. Некоторые сведения о функциях, вектор-функциях и комплексных функциях 82
§ 7. Многочлены 86
Глава 1. Непрерывные функции 92
§ 1. е-допуск функции в точке 93
§ 2. Определение непрерывности 104
§ 3. Некоторые действия с непрерывными функциями .... 108
§ 4. Непрерывность линейной комбинации, произведения и частного непрерывных функций. Первые примеры непрерывных функций 110
§ 5. Локальные свойства непрерывных функций 113
§ 6. От локальных свойств непрерывных функций к глобальным 116
§ 7. Доказательства теорем о глобальных свойствах непрерывных функций 119
§ 8. Обращение теоремы о сохранении промежутка для монотонных функции. Непрерывность обратной функции ... 121
§ 9. Непрерывность элементарных функций 122
§ 10. Классификация разрывов. Исправление функции в точке 120
Глава 2. Асимптотические равенства и оценки 130
§ 1. Предел функции в точке —
§ 2. Бесконечный предел и предел в бесконечности 130
§ 3. Обобщение: предел в R 138
§ 4. Единственность предела 141
§ 5. Непрерывность и предел композиции 143
§ 6. Предел числовой последовательности 140
§ 7. Определение суммы ряда 147
§ 8. Бесконечно малые и бесконечно большие 151
§ 9. Асимптотические оценки. Символы Оно 152
§ 10. Асимптотические равенства 158
§ 11. Уточнение асимптотических равенств 164
§ 12. Сравнение бесконечно малых и бесконечно больших ... 170
Глава 3. Дифференциальное исчисление 177
§ 1. Многочлены Тейлора: первое знакомство —
§ 2. Простейшие свойства многочленов Тейлора 180
§ 3. Первый многочлен Тейлора и касательная 186
§ 4. Исследование функции на монотонность и отыскание точек экстремума с помощью многочленов Тейлора 190
§ 5. Производная и дифференциал. Классы Сn. Формулировка основного результата 200
§ 6. Формула Тейлора (доказательство) 216
§ 7. Векторный вариант теории 224
§ 8. Правила дифференцирования. Свойства классов Ст . . 230
§ 9. Некоторые дополнения и обобщения, связанные с понятием производной и формулой Тейлора 238
Глава 4. Интеграл 262
§ 1. Первообразная —
§ 2. Римановы суммы и их пределы 265
§ 3. Основной результат: формула Ньютона—Лейбница ... 269
§ 4. Интеграл и его основные свойства 272
§ 5. Линейность интеграла. Теорема о среднем. Некоторые оценки интеграла 282
§ 6. Интегрирование по частям. Интегральная форма остатка формулы Тейлора 289
§ 7. Замена переменной в интеграле 294
§ 8. Восстановление аддитивной функции промежутка по ее плотности 297
§ 9. Некоторые дополнения 305
Глава 5. Приложения дифференциального и интегрального исчисления к некоторым задачам анализа, геометрии и механики 310
§ 1. Логарифмы —
§ 2. Экспонента. Степенная и показательная функции .... 323
§ 3. Экспонента с мнимым показателем. Тригонометрические функция 332
§ 4. Выпуклые функции 355
§ 5. Исследование функций, построение графиков, отыскание наибольших и наименьших значений 365
§ 6. Правило Лопиталя 381
§ 7. 0 приближенном решении уравнений 387
§ 8. Вычисление площадей н объемов 397
§ 9. Длины путей и кривых 401
§ 10. Равновесие гибкой нити 410
§ 11. Движение по прямой под действием силы, не зависящей от времени. Интеграл энергии 415
§ 12. Всемирное тяготение и законы Кеплера 428
Заключение 438
Указатель литературы 440
Предметный указатель 442

Скачать бесплатно на сайте yadi.sk

Предложения интернет-магазинов

Алгебра и начала математического анализа. Методические рекомендации. 10 класс: пособие для учителей.

Автор(ы): Федорова Надежда Евгеньевна, Ткачева Мария Владимировна   Издательство: Просвещение, 2015 г.  Серия: Математика и информатика

Цена: 328 руб.   Купить

Книга содержит методические рекомендации учителям, преподающим алгебру и начала математического анализа в 10 классе по учебнику авторов Ю. М. Колягина и др. Пособие написано в соответствии с концепцией обучения алгебре и началам математического анализа по этому учебнику, а также в соответствии с его содержанием и структурой. В нём даны как общие, так и конкретные советы по изучению каждой темы.


Математика. 9 класс. "Неравенства". "Системы неравенств". Экспресс-репетитор для подготовки к ГИА

Автор(ы): Сычева Галина Владимировна, Гусева Наталья Борисовна, Гусев Владимир Алексеевич   Издательство: Астрель, 2013 г.  Серия: ГИА - экзамен в новой форме

Цена: 65 руб.   Купить

Пособие рассчитано на самостоятельную подготовку учащихся к ГИА. В него входят задания, включающие темы "Неравенства", "Системы неравенств с одной переменной. Совокупность неравенств с одной переменной". Каждый раздел предваряется кратким теоретическим материалом и содержит большое количество примеров решения задач. Количество заданий в теме варьируется в зависимости от ее сложности, а также количества заданий в 1 ИА, посвященных данной теме. Каждая тема включает в себя упражнения, которые позволяют учащимся самостоятельно повторить и закрепить изученное и успешно справиться с заданиями ГИА. Чтобы проверить, усвоен ли материал, в конце книги приведены ответы ко всем упражнениям.


Алгебра и начала математического анализа. Методическое пособие для учителя. ФГОС

Автор(ы): Мордкович Александр Григорьевич, Семенов Павел Владимирович   Издательство: Мнемозина, 2015 г.  Серия: Математика

Цена: 337 руб.   Купить

В пособии представлены рабочая программа курса алгебры и начал математического анализа в 10-11-м классах, приведено примерное тематическое планирование учебного материала в 10-м классе (с характеристикой видов учебной деятельности). Даны методические рекомендации по работе с учебником А. Г. Мордковича, П. В. Семенова "Алгебра и начала математического анализа (базовый и углублённый уровни). 10 класс" и приведены решения наиболее трудных задач из второй части учебника.


Алгебра и начала математического анализа. 11 класс. Методическое пособие для учителя. ФГОС

Автор(ы): Мордкович Александр Григорьевич, Семенов Павел Владимирович   Издательство: Мнемозина, 2015 г.  Серия: Математика

Цена: 337 руб.   Купить

В пособии представлены рабочая программа курса алгебры и начал математического анализа в 10-11-м классах, приведено примерное тематическое планирование учебного материала в 11-м классе (с характеристикой видов учебной деятельности). Даны методические рекомендации по работе с учебником А. Г. Мордковича, П. В. Семенова "Алгебра и начала математического анализа. 11 класс (базовый и углублённый уровни)" и приведены решения наиболее трудных задач из второй части учебника. 3-е издание, переработанное.

ПЕДСОВЕТ / ФОРУМ

Новости образования

Новости науки

флаг италииX-UNI рекомендует репетитора итальянского языка: yuliyavenezia (Скайп).

Репетитор по Скайпу без посредников

Неограниченная аудитория, свободный график. Начните свой бизнес здесь!